Формальные модели представления знаний.
Система ИИ в определенном смысле моделирует интеллектуальную деятельность человека и, в частности, - логику его рассуждений. В грубо упрощенной форме наши логические построения при этом сводятся к следующей схеме: из одной или нескольких посылок (которые считаются истинными) следует сделать "логически верное" заключение (вывод, следствие). Очевидно, для этого необходимо, чтобы и посылки, и заключение были представлены на понятном языке, адекватно отражающем предметную область, в которой проводится вывод. В обычной жизни это наш естественный язык общения, в математике, например, это язык определенных формул и т.п. Наличие же языка предполагает, во - первых, наличие алфавита (словаря), отображающего в символьной форме весь набор базовых понятий (элементов), с которыми придется иметь дело и, во - вторых, набор синтаксических правил, на основе которых, пользуясь алфавитом, можно построить определенные выражения.
Логические выражения, построенные в данном языке, могут быть истинными или ложными. Некоторые из этих выражений, являющиеся всегда истинными. Объявляются аксиомами (или постулатами). Они составляют ту базовую систему посылок, исходя из которой и пользуясь определенными правилами вывода, можно получить заключения в виде новых выражений, также являющихся истинными.
Если перечисленные условия выполняются, то говорят, что система удовлетворяет требованиям формальной теории. Ее так и называют формальной системой (ФС). Система, построенная на основе формальной теории, называется также аксиоматической системой.
Формальная теория должна, таким образом, удовлетворять следующему определению:
всякая формальная теория F = (A, V, W, R), определяющая некоторую аксиоматическую систему, характеризуется:
наличием алфавита (словаря), A,
множеством синтаксических правил, V,
множеством аксиом, лежащих в основе теории, W,
множеством правил вывода, R.
Исчисление высказываний (ИВ) и исчисление предикатов (ИП) являются классическими примерами аксиоматических систем.
Эти ФС хорошо исследованы и имеют прекрасно разработанные модели логического вывода - главной метапроцедуры в интеллектуальных системах. Поэтому все, что может и гарантирует каждая из этих систем, гарантируется и для прикладных ФС как моделей конкретных предметных областей. В частности, это гарантии непротиворечивости вывода, алгоритмической разрешимости (для исчисления высказываний) и полуразрешимости (для исчислений предикатов первого порядка).
ФС имеют и недостатки, которые заставляют искать иные формы представления. Главный недостаток - это "закрытость" ФС, их негибкость. Модификация и расширение здесь всегда связаны с перестройкой всей ФС, что для практических систем сложно и трудоемко. В них очень сложно учитывать происходящие изменения. Поэтому ФС как модели представления знаний используются в тех предметных областях, которые хорошо локализуются и мало зависят от внешних факторов.
Назад | Оглавление | Вперед |
Каталог | Индекс раздела |