Основы проектирования систем искусственного интеллекта



         

Различные подходы к построению систем ИИ - часть 2


Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения — не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой алгебры.

Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных.

Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения собственно систем ИИ, это уже ранее упоминавшийся ТАИР.

Для моделей, построенных по мотивам человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом — нейронные сети работают даже при условии неполной информации об окружающей среде, то есть как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".




Содержание  Назад  Вперед